Cationic surfactants are key ingredients in many household & personal care products, biocides & industrial processes.

- K_{OW} not possible/available for “ionized surfactants”, hampering chemical fate & environmental risk assessments.
- Partitioning of ionic surfactants into phospholipid membranes (K_{MW}) likely dominates in organismal tissue.
- Using two “updated” phospholipid-based assays (ref A+B), measured K_{MW} for 19 surfactants show surprising series.
- Bilayer membrane data calibrated simple K_{MW} models. K_{MW} is used (besides K_{OW}) in a bioaccumulation model (ref C).

Measuring and Modeling Membrane-Water Partitioning Coefficients for Cationic Surfactants

Q1: measuring K_{MW} ?

2 METHODS:

- **Solid-Supported Lipid Membrane**
 (SSLM, “TRANSIL” non-covalently linked bilayer)

 SSLM leak 1% of phospholipids: effect if $K_{MW} > 4$! (ref A)

 Modified SSLM protocol: in 2mL HPLC vials + PBS renewal

 Measurements become difficult if $>C_{14}$ ($K_{MW} > 6$)

 K_{MW} increase with alkyl chain & RN-H$_3$ > RN-H$_2$ > RN-H > RN-$^+$

- **Immobile Artificial Membrane HPLC**
 (IAM-HPLC, bound monolayer coating)

 Eluent @ pH5 to minimize confounding electrostatics (ref B)

 $K_{MW}(IAM) = 18.9 \cdot k_{IAM}$; use solvent series up to K_{MW} of 6

CATIONIC SURFACANTS:

- 19 chemicals (pK$_a$ > 9.5), C$_{6-14}$ alkyl chain (R), 7 head group types

<table>
<thead>
<tr>
<th>SSLM</th>
<th>K_{MW} (log)</th>
<th>H$_3$</th>
<th>H$_2$</th>
<th>H$_1$</th>
<th>N$^+$</th>
<th>Benz</th>
<th>Pyr</th>
<th>R$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_6$</td>
<td>2.1</td>
<td>3.1</td>
<td>2.8</td>
<td>2.4</td>
<td>2.2</td>
<td>2.1</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>C$_8$</td>
<td>4.7</td>
<td>4.0</td>
<td>3.7</td>
<td>3.3</td>
<td>4.0</td>
<td>4.7</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>C$_{10}$</td>
<td>5.3</td>
<td>5.3</td>
<td>5.4</td>
<td>5.6</td>
<td>5.3</td>
<td>5.3</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>C$_{12}$</td>
<td>4.9</td>
<td>4.9</td>
<td>5.4</td>
<td>5.6</td>
<td>5.3</td>
<td>5.4</td>
<td>5.6</td>
<td></td>
</tr>
</tbody>
</table>

Q2: modeling K_{MW} ?

- **QSAR based on SSLM data**, with correction factors if head is not N-H$_3$ (not for N-R$_2$ & N-Pyr):

 \[
 \log K_{MW} = -1.6 + 0.59 \cdot R - 0.28 \ (if \ N^+H_2) - 0.56 \ (if \ N^+H) - 1.1 (if \ N^+) - 0.1 (if \ N^+Benz)
 \]

- **QSAR based on IAM-HPLC data**, with two amine type correction factors, for pH 7.4:

 \[
 \log K_{MW} = \log K_{MW(IAM-PH5)} + 0.8 \ (if \ N^+H_3) + 0.5 \ (if \ N^+H_2)
 \]

- **COSMOmic simulation**: 3D hydrated lipid bilayer (MD) & quantum chemistry-optimized 3D input structures

 \[
 \log K_{MW} = \log K_{DNPCW(TUHH)} - 0.17 (if \ N^+H_3) + 0.3 (other)
 \]