Abstract: To quantify the environmental risk of the increasing use of personal care products, accurate emission estimates of their components are required. In order to be reliable, these estimates need to consider the variability bound with the use of those products. Variability is induced by economic, demographic and social factors as well as by differences in consumer behaviour. Accounting for this variability is important to identify chemical emission hotspots. Recent (top-down) tonnage approaches estimate chemical emissions through disaggregation at smaller spatial resolution of products sales data using information about population density and GDP. The aim of this work is to explore potential improvements of methods to estimate chemical emissions from consumer products. One possible improvement is the consideration of more variables like age, education level and ethnical origin when disaggregating products sales data at smaller spatial resolution. Another possible approach for estimating the amounts of chemicals released to the environment is to use average product consumption data from consumer surveys thus accounting for differences in consumer behaviour (bottom-up approach). Both approaches define the amount of product used per time which can be expressed in form of a probability density function. In a second step, the inclusion levels of chemicals are derived from the chemical composition of single consumer products. Finally, these values are used to estimate probability density functions of chemicals emitted to the environment. This work focuses on countries for which data is available for laundry products and shampoo, e.g. the European Union, the U.S., India and China. The chemical emission estimation techniques derived from this work can be used to derive global chemical emission maps. These maps can be used both for risk assessment and when conducting life cycle assessments of consumer products.